详解调度周期SchedulingCycle(下)
1. 调度周期
在上篇中详细介绍了调度周期的上半段,也就是Predicates
过滤阶段,在其过程中返回了一个重要的对象feasibleNodes
,它是一个NodeInfo
类型的切片,保存了在条件过滤后符合Pod调度要求的节点信息。
回到Predicates
结束的位置,也就是schedulePod()
方法中
func (sched *Scheduler) schedulePod(ctx context.Context, fwk framework.Framework, state *framework.CycleState, pod *v1.Pod) (result ScheduleResult, err error) {
......
// Predicates阶段 返回预选Node和诊断结果
feasibleNodes, diagnosis, err := sched.findNodesThatFitPod(ctx, fwk, state, pod)
......
// Case1:节点列表为空 返回失败
if len(feasibleNodes) == 0 {
// 上层函数只会关注err是否为空 result未被赋值
return result, &framework.FitError{
Pod: pod,
NumAllNodes: sched.nodeInfoSnapshot.NumNodes(),
Diagnosis: diagnosis,
}
}
// Case2:列表长度为1 不需要Priorities阶段 直接走后续流程
if len(feasibleNodes) == 1 {
// 在Predicates阶段成功时会根据feasibleNodes填充result对象
return ScheduleResult{
SuggestedHost: feasibleNodes[0].Node().Name,
EvaluatedNodes: 1 + diagnosis.NodeToStatus.Len(),
FeasibleNodes: 1,
}, nil
}
// Case3:列表长度>1 需要Priorities阶段选出最合适的节点再返回
priorityList, err := prioritizeNodes(ctx, sched.Extenders, fwk, state, pod, feasibleNodes)
if err != nil {
return result, err
}
host, _, err := selectHost(priorityList, numberOfHighestScoredNodesToReport)
trace.Step("Prioritizing done")
return ScheduleResult{
SuggestedHost: host,
EvaluatedNodes: len(feasibleNodes) + diagnosis.NodeToStatus.Len(),
FeasibleNodes: len(feasibleNodes),
}, err
}
2. Priorities阶段
Priorities
阶段的入口函数是prioritizeNodes()
,对调度流程有过基本了解的一定都知道Pod的调度有预选
和优选
两个阶段,很明显在这个阶段要做的事情就是对上一步中过滤出来的节点进行排序,然后选择最合适的一个。
func prioritizeNodes(
ctx context.Context,
extenders []framework.Extender,
fwk framework.Framework,
state *framework.CycleState,
pod *v1.Pod,
nodes []*framework.NodeInfo,
) ([]framework.NodePluginScores, error) {
logger := klog.FromContext(ctx)
if len(extenders) == 0 && !fwk.HasScorePlugins() {
result := make([]framework.NodePluginScores, 0, len(nodes))
for i := range nodes {
result = append(result, framework.NodePluginScores{
Name: nodes[i].Node().Name,
TotalScore: 1,
})
}
return result, nil
}
// Run PreScore plugins.
preScoreStatus := fwk.RunPreScorePlugins(ctx, state, pod, nodes)
if !preScoreStatus.IsSuccess() {
return nil, preScoreStatus.AsError()
}
// Run the Score plugins.
nodesScores, scoreStatus := fwk.RunScorePlugins(ctx, state, pod, nodes)
if !scoreStatus.IsSuccess() {
return nil, scoreStatus.AsError()
}
// Additional details logged at level 10 if enabled.
loggerVTen := logger.V(10)
if loggerVTen.Enabled() {
for _, nodeScore := range nodesScores {
for _, pluginScore := range nodeScore.Scores {
loggerVTen.Info("Plugin scored node for pod", "pod", klog.KObj(pod), "plugin", pluginScore.Name, "node", nodeScore.Name, "score", pluginScore.Score)
}
}
}
if len(extenders) != 0 && nodes != nil {
// allNodeExtendersScores has all extenders scores for all nodes.
// It is keyed with node name.
allNodeExtendersScores := make(map[string]*framework.NodePluginScores, len(nodes))
var mu sync.Mutex
var wg sync.WaitGroup
for i := range extenders {
if !extenders[i].IsInterested(pod) {
continue
}
wg.Add(1)
go func(extIndex int) {
metrics.Goroutines.WithLabelValues(metrics.PrioritizingExtender).Inc()
defer func() {
metrics.Goroutines.WithLabelValues(metrics.PrioritizingExtender).Dec()
wg.Done()
}()
prioritizedList, weight, err := extenders[extIndex].Prioritize(pod, nodes)
if err != nil {
// Prioritization errors from extender can be ignored, let k8s/other extenders determine the priorities
logger.V(5).Info("Failed to run extender's priority function. No score given by this extender.", "error", err, "pod", klog.KObj(pod), "extender", extenders[extIndex].Name())
return
}
mu.Lock()
defer mu.Unlock()
for i := range *prioritizedList {
nodename := (*prioritizedList)[i].Host
score := (*prioritizedList)[i].Score
if loggerVTen.Enabled() {
loggerVTen.Info("Extender scored node for pod", "pod", klog.KObj(pod), "extender", extenders[extIndex].Name(), "node", nodename, "score", score)
}
// MaxExtenderPriority may diverge from the max priority used in the scheduler and defined by MaxNodeScore,
// therefore we need to scale the score returned by extenders to the score range used by the scheduler.
finalscore := score * weight * (framework.MaxNodeScore / extenderv1.MaxExtenderPriority)
if allNodeExtendersScores[nodename] == nil {
allNodeExtendersScores[nodename] = &framework.NodePluginScores{
Name: nodename,
Scores: make([]framework.PluginScore, 0, len(extenders)),
}
}
allNodeExtendersScores[nodename].Scores = append(allNodeExtendersScores[nodename].Scores, framework.PluginScore{
Name: extenders[extIndex].Name(),
Score: finalscore,
})
allNodeExtendersScores[nodename].TotalScore += finalscore
}
}(i)
}
// wait for all go routines to finish
wg.Wait()
for i := range nodesScores {
if score, ok := allNodeExtendersScores[nodes[i].Node().Name]; ok {
nodesScores[i].Scores = append(nodesScores[i].Scores, score.Scores...)
nodesScores[i].TotalScore += score.TotalScore
}
}
}
if loggerVTen.Enabled() {
for i := range nodesScores {
loggerVTen.Info("Calculated node's final score for pod", "pod", klog.KObj(pod), "node", nodesScores[i].Name, "score", nodesScores[i].TotalScore)
}
}
return nodesScores, nil
}
通过对Kubernetes源码
的学习,可以感觉到它的代码是很结构化的,prioritizeNodes()
函数整体较长,我们分块来理清它的逻辑。首先根据函数签名,它的入参包括:用于控制生命周期的上下文参数ctx
,调度扩展器extenders
,调度框架实例fwk
,存储调度状态的state
,Pod信息对象pod
,以及上一步返回的节点列表nodes
。返回值是一个NodePluginScores
切片类型的节点评分结果,后续会经过selectHost()
函数,最终敲定的目标节点并返回节点名称。
func prioritizeNodes(
ctx context.Context,
extenders []framework.Extender,
fwk framework.Framework,
state *framework.CycleState,
pod *v1.Pod,
nodes []*framework.NodeInfo,
) ([]framework.NodePluginScores, error)
先来看不包括调度扩展器的逻辑部分,如果没有调度扩展器和Score
插件,就把所有的节点都打1分
然后返回。
func prioritizeNodes(
ctx context.Context,
extenders []framework.Extender,
fwk framework.Framework,
state *framework.CycleState,
pod *v1.Pod,
nodes []*framework.NodeInfo,
) ([]framework.NodePluginScores, error) {
logger := klog.FromContext(ctx)
// 没有扩展器也没有评分插件 统一给一分并返回
if len(extenders) == 0 && !fwk.HasScorePlugins() {
result := make([]framework.NodePluginScores, 0, len(nodes))
for i := range nodes {
result = append(result, framework.NodePluginScores{
Name: nodes[i].Node().Name,
TotalScore: 1,
})
}
return result, nil
}
// PreScore扩展点
preScoreStatus := fwk.RunPreScorePlugins(ctx, state, pod, nodes)
if !preScoreStatus.IsSuccess() {
return nil, preScoreStatus.AsError()
}
// Score扩展点
nodesScores, scoreStatus := fwk.RunScorePlugins(ctx, state, pod, nodes)
if !scoreStatus.IsSuccess() {
return nil, scoreStatus.AsError()
}
// 详细日志输出
loggerVTen := logger.V(10)
if loggerVTen.Enabled() {
for _, nodeScore := range nodesScores {
for _, pluginScore := range nodeScore.Scores {
loggerVTen.Info("Plugin scored node for pod", "pod", klog.KObj(pod), "plugin", pluginScore.Name, "node", nodeScore.Name, "score", pluginScore.Score)
}
}
}
......
}
RunPreScorePlugins()
的实现和RunPreFilterPlugins()
非常类似,同样是做了两大类事情:在遍历执行PreScore
插件的过程中,调用cycleState.Write()
记录信息到cycleState
中,如污点容忍和亲和性等,并在遍历结束后把没有相关条件后续不需要执行的Score
插件也记录到cycleState
。
func (f *frameworkImpl) RunPreScorePlugins(
ctx context.Context,
state *framework.CycleState,
pod *v1.Pod,
nodes []*framework.NodeInfo,
) (status *framework.Status) {
startTime := time.Now()
skipPlugins := sets.New[string]()
// 最后把Score阶段不需要执行的插件记录到cycleState
defer func() {
state.SkipScorePlugins = skipPlugins
metrics.FrameworkExtensionPointDuration.WithLabelValues(metrics.PreScore, status.Code().String(), f.profileName).Observe(metrics.SinceInSeconds(startTime))
}()
logger := klog.FromContext(ctx)
verboseLogs := logger.V(4).Enabled()
if verboseLogs {
logger = klog.LoggerWithName(logger, "PreScore")
}
// 遍历执行PreScore插件逻辑
for _, pl := range f.preScorePlugins {
ctx := ctx
if verboseLogs {
logger := klog.LoggerWithName(logger, pl.Name())
ctx = klog.NewContext(ctx, logger)
}
status = f.runPreScorePlugin(ctx, pl, state, pod, nodes)
if status.IsSkip() {
skipPlugins.Insert(pl.Name())
continue
}
if !status.IsSuccess() {
return framework.AsStatus(fmt.Errorf("running PreScore plugin %q: %w", pl.Name(), status.AsError()))
}
}
return nil
}
以Kubernetes的默认插件配置为例,分析PreScore
和Score
插件的行为,由于Weight
权重字段一定是作用于Score
相关的扩展点,所以选择TaintToleration
插件作为分析对象。
func getDefaultPlugins() *v1.Plugins {
plugins := &v1.Plugins{
MultiPoint: v1.PluginSet{
Enabled: []v1.Plugin{
{Name: names.SchedulingGates},
{Name: names.PrioritySort},
{Name: names.NodeUnschedulable},
{Name: names.NodeName},
{Name: names.TaintToleration, Weight: ptr.To[int32](3)},
{Name: names.NodeAffinity, Weight: ptr.To[int32](2)},
{Name: names.NodePorts},
{Name: names.NodeResourcesFit, Weight: ptr.To[int32](1)},
{Name: names.VolumeRestrictions},
{Name: names.NodeVolumeLimits},
{Name: names.VolumeBinding},
{Name: names.VolumeZone},
{Name: names.PodTopologySpread, Weight: ptr.To[int32](2)},
{Name: names.InterPodAffinity, Weight: ptr.To[int32](2)},
{Name: names.DefaultPreemption},
{Name: names.NodeResourcesBalancedAllocation, Weight: ptr.To[int32](1)},
{Name: names.ImageLocality, Weight: ptr.To[int32](1)},
{Name: names.DefaultBinder},
},
},
}
applyFeatureGates(plugins)
return plugins
}
在经过从算法硬编码
到Scheduler Framework
的重构后,插件都在路径pkg/scheduler/framework/plugins
下定义。TaintToleration
插件可以在该路径下找到,一般每个插件目录下都是由算法实现和单元测试两个文件组成。
在taint_toleration.go
文件中,可以看到该插件实现了Filter、PreScore、Score、NormalizeScore
接口,其中的逻辑比较简单,PreScore
扩展点时使用cycleState.Write()
记录污点容忍信息到cycleState
,到Score
扩展点时TaintToleration
根据写入时的key使用cycleState.Read()
读出PreScore
阶段记录的数据,如果不能容忍软性污点就计数加一,最后返回结果。NormalizeScore
扩展点调用了默认的归一化逻辑。
func (pl *TaintToleration) PreScore(ctx context.Context, cycleState *framework.CycleState, pod *v1.Pod, nodes []*framework.NodeInfo) *framework.Status {
if len(nodes) == 0 {
return nil
}
tolerationsPreferNoSchedule := getAllTolerationPreferNoSchedule(pod.Spec.Tolerations)
state := &preScoreState{
tolerationsPreferNoSchedule: tolerationsPreferNoSchedule,
}
cycleState.Write(preScoreStateKey, state)
return nil
}
func (pl *TaintToleration) Score(ctx context.Context, state *framework.CycleState, pod *v1.Pod, nodeName string) (int64, *framework.Status) {
nodeInfo, err := pl.handle.SnapshotSharedLister().NodeInfos().Get(nodeName)
if err != nil {
return 0, framework.AsStatus(fmt.Errorf("getting node %q from Snapshot: %w", nodeName, err))
}
node := nodeInfo.Node()
s, err := getPreScoreState(state)
if err != nil {
return 0, framework.AsStatus(err)
}
score := int64(countIntolerableTaintsPreferNoSchedule(node.Spec.Taints, s.tolerationsPreferNoSchedule))
return score, nil
}
func (pl *TaintToleration) NormalizeScore(ctx context.Context, _ *framework.CycleState, pod *v1.Pod, scores framework.NodeScoreList) *framework.Status {
return helper.DefaultNormalizeScore(framework.MaxNodeScore, true, scores)
}
func countIntolerableTaintsPreferNoSchedule(taints []v1.Taint, tolerations []v1.Toleration) (intolerableTaints int) {
for _, taint := range taints {
// 仅处理软性污点
if taint.Effect != v1.TaintEffectPreferNoSchedule {
continue
}
// 不能容忍该污点时计数+1
if !v1helper.TolerationsTolerateTaint(tolerations, &taint) {
intolerableTaints++
}
}
// 返回不能容忍污点计数结果
return
}
2.1. Score扩展点与NormalizeScore评分归一化
RunScorePlugins()
的实现和RunFilterPlugins()
类似。首先,Filter
插件执行的过程中,状态被存储在CycleState
对象并读写,过滤的行为属于责任链模式,如果一处不通过就直接失败退出,所以过滤阶段节点层面并行但插件层面是串行的。评分阶段也是节点层面串行和插件层面并行,如有疑问可以对比Predicates
阶段的findNodesThatPassFilters()
与Priorities
阶段的RunScorePlugins()
方法并加以详细对比。
func (f *frameworkImpl) RunScorePlugins(ctx context.Context, state *framework.CycleState, pod *v1.Pod, nodes []*framework.NodeInfo) (ns []framework.NodePluginScores, status *framework.Status) {
startTime := time.Now()
defer func() {
metrics.FrameworkExtensionPointDuration.WithLabelValues(metrics.Score, status.Code().String(), f.profileName).Observe(metrics.SinceInSeconds(startTime))
}()
allNodePluginScores := make([]framework.NodePluginScores, len(nodes))
numPlugins := len(f.scorePlugins)
plugins := make([]framework.ScorePlugin, 0, numPlugins)
pluginToNodeScores := make(map[string]framework.NodeScoreList, numPlugins)
// 初始化Score扩展点使用的插件列表
for _, pl := range f.scorePlugins {
if state.SkipScorePlugins.Has(pl.Name()) {
continue
}
plugins = append(plugins, pl)
pluginToNodeScores[pl.Name()] = make(framework.NodeScoreList, len(nodes))
}
// 创建上下文对象
ctx, cancel := context.WithCancel(ctx)
defer cancel()
errCh := parallelize.NewErrorChannel()
// Score插件列表不为空时
if len(plugins) > 0 {
logger := klog.FromContext(ctx)
verboseLogs := logger.V(4).Enabled()
if verboseLogs {
logger = klog.LoggerWithName(logger, "Score")
}
// 为每个节点并发执行评分操作
f.Parallelizer().Until(ctx, len(nodes), func(index int) {
nodeName := nodes[index].Node().Name
logger := logger
if verboseLogs {
logger = klog.LoggerWithValues(logger, "node", klog.ObjectRef{Name: nodeName})
}
// Score插件级别串行
for _, pl := range plugins {
ctx := ctx
if verboseLogs {
logger := klog.LoggerWithName(logger, pl.Name())
ctx = klog.NewContext(ctx, logger)
}
s, status := f.runScorePlugin(ctx, pl, state, pod, nodeName)
if !status.IsSuccess() {
err := fmt.Errorf("plugin %q failed with: %w", pl.Name(), status.AsError())
errCh.SendErrorWithCancel(err, cancel)
return
}
// 记录评分信息到pluginToNodeScores
pluginToNodeScores[pl.Name()][index] = framework.NodeScore{
Name: nodeName,
Score: s,
}
}
}, metrics.Score)
if err := errCh.ReceiveError(); err != nil {
return nil, framework.AsStatus(fmt.Errorf("running Score plugins: %w", err))
}
}
// NormalizeScore扩展点
// 为每个插件并发执行评分归一化
f.Parallelizer().Until(ctx, len(plugins), func(index int) {
pl := plugins[index]
// Score插件必须实现ScoreExtensions()方法 如果不需要归一化就在该方法中返回nil
if pl.ScoreExtensions() == nil {
return
}
nodeScoreList := pluginToNodeScores[pl.Name()]
// 有归一化需要的执行插件的NormalizeScore()方法并返回结果
status := f.runScoreExtension(ctx, pl, state, pod, nodeScoreList)
if !status.IsSuccess() {
err := fmt.Errorf("plugin %q failed with: %w", pl.Name(), status.AsError())
errCh.SendErrorWithCancel(err, cancel)
return
}
}, metrics.Score)
if err := errCh.ReceiveError(); err != nil {
return nil, framework.AsStatus(fmt.Errorf("running Normalize on Score plugins: %w", err))
}
// 按节点粒度并发执行 根据权重调整最终评分
f.Parallelizer().Until(ctx, len(nodes), func(index int) {
nodePluginScores := framework.NodePluginScores{
Name: nodes[index].Node().Name,
Scores: make([]framework.PluginScore, len(plugins)),
}
for i, pl := range plugins {
weight := f.scorePluginWeight[pl.Name()]
nodeScoreList := pluginToNodeScores[pl.Name()]
score := nodeScoreList[index].Score
// 评分的范围如果不在1-100之间返回错误
if score > framework.MaxNodeScore || score < framework.MinNodeScore {
err := fmt.Errorf("plugin %q returns an invalid score %v, it should in the range of [%v, %v] after normalizing", pl.Name(), score, framework.MinNodeScore, framework.MaxNodeScore)
errCh.SendErrorWithCancel(err, cancel)
return
}
weightedScore := score * int64(weight)
// 记录单个插件最终评分到nodePluginScores
nodePluginScores.Scores[i] = framework.PluginScore{
Name: pl.Name(),
Score: weightedScore,
}
// 累加记录节点总分
nodePluginScores.TotalScore += weightedScore
}
allNodePluginScores[index] = nodePluginScores
}, metrics.Score)
if err := errCh.ReceiveError(); err != nil {
return nil, framework.AsStatus(fmt.Errorf("applying score defaultWeights on Score plugins: %w", err))
}
// 返回节点评分结果列表
return allNodePluginScores, nil
}
// 节点评分结构
type NodePluginScores struct {
// 节点名称
Name string
// 插件-评分 列表
Scores []PluginScore
// 总分
TotalScore int64
}
2.2. NormalizeScore插件
一些插件的NormalizeScore()
实现是直接调用了默认的归一化评分方法DefaultNormalizeScore()
,在文件pkg/scheduler/framework/plugins/helper/normalize_score.go
中定义,仅注释不做过多说明。
func DefaultNormalizeScore(maxPriority int64, reverse bool, scores framework.NodeScoreList) *framework.Status {
var maxCount int64
// 获取所有节点中的最高分
for i := range scores {
if scores[i].Score > maxCount {
maxCount = scores[i].Score
}
}
// 如果所有节点评分都是0的情况
if maxCount == 0 {
if reverse {
for i := range scores {
scores[i].Score = maxPriority
}
}
return nil
}
// 正常情况
for i := range scores {
score := scores[i].Score
// 100*评分/最高分
score = maxPriority * score / maxCount
// reverse用于Score评分低表示更高优先级的情况 如TaintToleration插件
if reverse {
// 低分反转变成高分
score = maxPriority - score
}
// 记录归一化后的评分
scores[i].Score = score
}
return nil
}
对上面例如TaintToleration
插件的了解,不难发现其实调度器的算法实现并不复杂,重点在于整体流程的设计,实际上在了解了Scheduler Framework
后,Pod的整个调度流程就已经非常清晰了。到目前为止总共接触到了PreFilter
、Filter
、PreScore
、Score
这四个扩展点的插件(其中NormalizeScore
在Score
扩展点内部,不属于12个标准扩展点之一)。在结合流程图中,前面有三个扩展点没有看到,分别是PreEnqueue
、QueueSort
和PostFilter
,其中PreEnqueue
和QueueSort
是调度队列相关的两个插件,所以没有出现在调度周期内,如果感兴趣可以回到调度队列的runPreEnqueuePlugins()
方法中,在Pod添加到ActiveQ
时调用。QueueSort
调用点较为隐蔽,可以以func (aq *activeQueue) update()
为入口,调用关系如下方所示,调度队列实例创建之初,就向其中注册了Less()
方法,它的调用点不像其他的插件是runXXXPlugin()
而是Less()
,Pod的入队和出队都会调用Less()
方法。PostFilter
插件只与抢占流程有关,在后面会单独介绍。
// 入队的调用链 activeQueue.update->queue.AddOrUpdate->heap.Push->up
func (aq *activeQueue) update(newPod *v1.Pod, oldPodInfo *framework.QueuedPodInfo) *framework.QueuedPodInfo {
aq.lock.Lock()
defer aq.lock.Unlock()
if pInfo, exists := aq.queue.Get(oldPodInfo); exists {
_ = pInfo.Update(newPod)
aq.queue.AddOrUpdate(pInfo)
return pInfo
}
return nil
}
func (h *Heap[T]) AddOrUpdate(obj T) {
key := h.data.keyFunc(obj)
if _, exists := h.data.items[key]; exists {
h.data.items[key].obj = obj
heap.Fix(h.data, h.data.items[key].index)
} else {
heap.Push(h.data, &itemKeyValue[T]{key, obj})
if h.metricRecorder != nil {
h.metricRecorder.Inc()
}
}
}
// golang的container/heap包
func Push(h Interface, x any) {
h.Push(x)
up(h, h.Len()-1)
}
func up(h Interface, j int) {
for {
i := (j - 1) / 2 // parent
// 直接调用点
if i == j || !h.Less(j, i) {
break
}
h.Swap(i, j)
j = i
}
}
// 出队的调用链 activeQueue.pop->activeQueue.unlockedPop->queue.Pop->heap.Pop->down
func (aq *activeQueue) pop(logger klog.Logger) (*framework.QueuedPodInfo, error) {
aq.lock.Lock()
defer aq.lock.Unlock()
return aq.unlockedPop(logger)
}
func (aq *activeQueue) unlockedPop(logger klog.Logger) (*framework.QueuedPodInfo, error) {
for aq.queue.Len() == 0 {
if aq.closed {
logger.V(2).Info("Scheduling queue is closed")
return nil, nil
}
aq.cond.Wait()
}
pInfo, err := aq.queue.Pop()
......
}
func (h *Heap[T]) Pop() (T, error) {
obj := heap.Pop(h.data)
if obj != nil {
if h.metricRecorder != nil {
h.metricRecorder.Dec()
}
return obj.(T), nil
}
var zero T
return zero, fmt.Errorf("heap is empty")
}
// golang的container/heap包
func Pop(h Interface) any {
n := h.Len() - 1
h.Swap(0, n)
down(h, 0, n)
return h.Pop()
}
func down(h Interface, i0, n int) bool {
i := i0
for {
j1 := 2*i + 1
if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
break
}
j := j1 // left child
// 直接调用点
if j2 := j1 + 1; j2 < n && h.Less(j2, j1) {
j = j2 // = 2*i + 2 // right child
}
if !h.Less(j, i) {
break
}
h.Swap(i, j)
i = j
}
return i > i0
}
2.3. SelectHost
此时已经得到了每个节点和其评分的对应关系,还需要进行Priorities
阶段的最后一步,那就是从上一步的结果中选出最优先的那个,然后以ScheduleResult
结构的形式返回给上层。
host, _, err := selectHost(priorityList, numberOfHighestScoredNodesToReport)
return ScheduleResult{
SuggestedHost: host,
EvaluatedNodes: len(feasibleNodes) + diagnosis.NodeToStatus.Len(),
FeasibleNodes: len(feasibleNodes),
}, err
其中的一个输入参数是numberOfHighestScoredNodesToReport
,它的值为3,可以覆盖一主两备
的场景并避免记录过多信息的内存占用,同时用于抢占流程和错误记录,该数值是信息完整性和性能之间的平衡点。
// numberOfHighestScoredNodesToReport is the number of node scores
// to be included in ScheduleResult.
numberOfHighestScoredNodesToReport = 3
下面分析selectHost()
函数,首先是对长度做例行的判断,然后开始提取前三评分的节点,这里的设计采用了蓄水池抽样法。首先初始化了一个列表,并把nodeScoreHeap
堆中的第一个元素Pop
出来加入到列表中,因为nodeScoreHeap
是按TotalScore
从高到低来排序的。然后开始循环添加元素,在切片实际长度小于容量时,先拿当前节点的TotalScore
和第一个元素的TotalScore
做比较,如果值相等就根据蓄水池抽样法,以1/相同分数节点数量
的概率替换第一个元素,以selectedIndex
动态记录其位置,然后在元素加满之后交换列表中两个索引位置的值,最终返回第一个元素的节点名称和分数前三的节点列表,至此Priorities
阶段完全结束。
func (h nodeScoreHeap) Less(i, j int) bool { return h[i].TotalScore > h[j].TotalScore }
func selectHost(nodeScoreList []framework.NodePluginScores, count int) (string, []framework.NodePluginScores, error) {
if len(nodeScoreList) == 0 {
return "", nil, errEmptyPriorityList
}
// 初始化堆结构的节点评分列表
var h nodeScoreHeap = nodeScoreList
heap.Init(&h)
cntOfMaxScore := 1
selectedIndex := 0
// 先提取第一个节点 必然是最高分
sortedNodeScoreList := make([]framework.NodePluginScores, 0, count)
sortedNodeScoreList = append(sortedNodeScoreList, heap.Pop(&h).(framework.NodePluginScores))
// 循环添加节点
for ns := heap.Pop(&h).(framework.NodePluginScores); ; ns = heap.Pop(&h).(framework.NodePluginScores) {
// 当前节点分数和最高分不同 且节点列表已满时退出循环
if ns.TotalScore != sortedNodeScoreList[0].TotalScore && len(sortedNodeScoreList) == count {
break
}
// 最高同分节点的选择 蓄水池抽样法
if ns.TotalScore == sortedNodeScoreList[0].TotalScore {
// 最高分同分节点数量计数+1
cntOfMaxScore++
if rand.Intn(cntOfMaxScore) == 0 {
// 同分节点有1/cntOfMaxScore的概率替代最优节点
selectedIndex = cntOfMaxScore - 1
}
}
sortedNodeScoreList = append(sortedNodeScoreList, ns)
// 堆为空时退出循环
if h.Len() == 0 {
break
}
}
// 如果最高分同分节点替换了0号元素
if selectedIndex != 0 {
// 在sortedNodeScoreList中交换元素位置
previous := sortedNodeScoreList[0]
sortedNodeScoreList[0] = sortedNodeScoreList[selectedIndex]
sortedNodeScoreList[selectedIndex] = previous
}
// 保证只有count个元素
if len(sortedNodeScoreList) > count {
sortedNodeScoreList = sortedNodeScoreList[:count]
}
// 返回第一个节点的名称和整个列表
return sortedNodeScoreList[0].Name, sortedNodeScoreList, nil
}
schedulePod()
方法返回的ScheduleResult
中包括最后要尝试绑定的节点SuggestedHost
,本次总共评估过的节点总数EvaluatedNodes
,其值是过滤阶段返回的feasibleNodes
长度与已知不可调度节点列表NodeToStatus
的长度总和,还有可用节点数量FeasibleNodes
。
return ScheduleResult{
SuggestedHost: host,
EvaluatedNodes: len(feasibleNodes) + diagnosis.NodeToStatus.Len(),
FeasibleNodes: len(feasibleNodes),
}, err
3. Assume阶段
ScheduleResult
对象返回以后,schedulingCycle()
方法中的第一个逻辑终于结束了,先不纠结于失败处理,继续分析标准的成功流程。
在SchedulePod()
方法返回了成功以后,Kubernetes
调度器对此有乐观的预期,认为经过精密而又保守的计算逻辑以后,这个Pod最终会被成功绑定,而绑定周期又是异步进行的,所以此时Pod会进入一个Assumed
的中间状态,它会存在于调度缓存Cache
中。
func (sched *Scheduler) schedulingCycle(
ctx context.Context,
state *framework.CycleState,
fwk framework.Framework,
podInfo *framework.QueuedPodInfo,
start time.Time,
podsToActivate *framework.PodsToActivate,
) (ScheduleResult, *framework.QueuedPodInfo, *framework.Status) {
logger := klog.FromContext(ctx)
pod := podInfo.Pod
scheduleResult, err := sched.SchedulePod(ctx, fwk, state, pod)
// err不为空的处理 暂且忽略
// ......
// 深拷贝PodInfo
assumedPodInfo := podInfo.DeepCopy()
assumedPod := assumedPodInfo.Pod
// 在缓存中对Pod的预期状态做更新
err = sched.assume(logger, assumedPod, scheduleResult.SuggestedHost)
......
}
调用assume()
方法更新调度缓存中的内容,其中的Cache.AssumePod()
在第一篇调度队列部分有过简单说明,这一步实际就是更新缓存一遍下一个Pod的计算能够考虑到处于Assume
状态的Pod,不至于因为资源冲突导致绑定失败。
func (sched *Scheduler) assume(logger klog.Logger, assumed *v1.Pod, host string) error {
// 修改NodeName字段
assumed.Spec.NodeName = host
// 添加到调度缓存中
if err := sched.Cache.AssumePod(logger, assumed); err != nil {
logger.Error(err, "Scheduler cache AssumePod failed")
return err
}
// if "assumed" is a nominated pod, we should remove it from internal cache
if sched.SchedulingQueue != nil {
// 更新清除提名器中的信息
sched.SchedulingQueue.DeleteNominatedPodIfExists(assumed)
}
return nil
}
4. Reserve扩展点
在Assume
阶段后,调度周期还剩下两个扩展点,此时关于调度的选择已经结束了,所做的内容是要为绑定和下次调度做准备,接下来的扩展点是资源预留Reserve
扩展点和准入Permit
扩展点。
func (sched *Scheduler) schedulingCycle(
ctx context.Context,
state *framework.CycleState,
fwk framework.Framework,
podInfo *framework.QueuedPodInfo,
start time.Time,
podsToActivate *framework.PodsToActivate,
) (ScheduleResult, *framework.QueuedPodInfo, *framework.Status) {
......
// Run the Reserve method of reserve plugins.
if sts := fwk.RunReservePluginsReserve(ctx, state, assumedPod, scheduleResult.SuggestedHost); !sts.IsSuccess() {
// trigger un-reserve to clean up state associated with the reserved Pod
fwk.RunReservePluginsUnreserve(ctx, state, assumedPod, scheduleResult.SuggestedHost)
if forgetErr := sched.Cache.ForgetPod(logger, assumedPod); forgetErr != nil {
logger.Error(forgetErr, "Scheduler cache ForgetPod failed")
}
if sts.IsRejected() {
fitErr := &framework.FitError{
NumAllNodes: 1,
Pod: pod,
Diagnosis: framework.Diagnosis{
NodeToStatus: framework.NewDefaultNodeToStatus(),
},
}
fitErr.Diagnosis.NodeToStatus.Set(scheduleResult.SuggestedHost, sts)
fitErr.Diagnosis.AddPluginStatus(sts)
return ScheduleResult{nominatingInfo: clearNominatedNode}, assumedPodInfo, framework.NewStatus(sts.Code()).WithError(fitErr)
}
return ScheduleResult{nominatingInfo: clearNominatedNode}, assumedPodInfo, sts
}
// Run "permit" plugins.
runPermitStatus := fwk.RunPermitPlugins(ctx, state, assumedPod, scheduleResult.SuggestedHost)
if !runPermitStatus.IsWait() && !runPermitStatus.IsSuccess() {
// trigger un-reserve to clean up state associated with the reserved Pod
fwk.RunReservePluginsUnreserve(ctx, state, assumedPod, scheduleResult.SuggestedHost)
if forgetErr := sched.Cache.ForgetPod(logger, assumedPod); forgetErr != nil {
logger.Error(forgetErr, "Scheduler cache ForgetPod failed")
}
if runPermitStatus.IsRejected() {
fitErr := &framework.FitError{
NumAllNodes: 1,
Pod: pod,
Diagnosis: framework.Diagnosis{
NodeToStatus: framework.NewDefaultNodeToStatus(),
},
}
fitErr.Diagnosis.NodeToStatus.Set(scheduleResult.SuggestedHost, runPermitStatus)
fitErr.Diagnosis.AddPluginStatus(runPermitStatus)
return ScheduleResult{nominatingInfo: clearNominatedNode}, assumedPodInfo, framework.NewStatus(runPermitStatus.Code()).WithError(fitErr)
}
return ScheduleResult{nominatingInfo: clearNominatedNode}, assumedPodInfo, runPermitStatus
}
// At the end of a successful scheduling cycle, pop and move up Pods if needed.
if len(podsToActivate.Map) != 0 {
sched.SchedulingQueue.Activate(logger, podsToActivate.Map)
// Clear the entries after activation.
podsToActivate.Map = make(map[string]*v1.Pod)
}
return scheduleResult, assumedPodInfo, nil
}
下面看资源预留的逻辑RunReservePluginsReserve()
和runReservePluginReserve()
方法,外层和之前的几个RunXXXPlugin()
没有什么区别。
func (f *frameworkImpl) RunReservePluginsReserve(ctx context.Context, state *framework.CycleState, pod *v1.Pod, nodeName string) (status *framework.Status) {
startTime := time.Now()
defer func() {
metrics.FrameworkExtensionPointDuration.WithLabelValues(metrics.Reserve, status.Code().String(), f.profileName).Observe(metrics.SinceInSeconds(startTime))
}()
logger := klog.FromContext(ctx)
verboseLogs := logger.V(4).Enabled()
if verboseLogs {
logger = klog.LoggerWithName(logger, "Reserve")
logger = klog.LoggerWithValues(logger, "node", klog.ObjectRef{Name: nodeName})
}
for _, pl := range f.reservePlugins {
ctx := ctx
if verboseLogs {
logger := klog.LoggerWithName(logger, pl.Name())
ctx = klog.NewContext(ctx, logger)
}
status = f.runReservePluginReserve(ctx, pl, state, pod, nodeName)
if !status.IsSuccess() {
if status.IsRejected() {
logger.V(4).Info("Pod rejected by plugin", "pod", klog.KObj(pod), "plugin", pl.Name(), "status", status.Message())
status.SetPlugin(pl.Name())
return status
}
err := status.AsError()
logger.Error(err, "Plugin failed", "plugin", pl.Name(), "pod", klog.KObj(pod))
return framework.AsStatus(fmt.Errorf("running Reserve plugin %q: %w", pl.Name(), err))
}
}
return nil
}
func (f *frameworkImpl) runReservePluginReserve(ctx context.Context, pl framework.ReservePlugin, state *framework.CycleState, pod *v1.Pod, nodeName string) *framework.Status {
if !state.ShouldRecordPluginMetrics() {
return pl.Reserve(ctx, state, pod, nodeName)
}
startTime := time.Now()
status := pl.Reserve(ctx, state, pod, nodeName)
f.metricsRecorder.ObservePluginDurationAsync(metrics.Reserve, pl.Name(), status.Code().String(), metrics.SinceInSeconds(startTime))
return status
}
那么看一个具体的资源预留插件VolumeBinding
实现,
func (pl *VolumeBinding) Reserve(ctx context.Context, cs *framework.CycleState, pod *v1.Pod, nodeName string) *framework.Status {
// 从CycleState中获取信息
state, err := getStateData(cs)
if err != nil {
return framework.AsStatus(err)
}
// we don't need to hold the lock as only one node will be reserved for the given pod
podVolumes, ok := state.podVolumesByNode[nodeName]
if ok {
allBound, err := pl.Binder.AssumePodVolumes(klog.FromContext(ctx), pod, nodeName, podVolumes)
if err != nil {
return framework.AsStatus(err)
}
// 有卷需要绑定时 值设置为allBound返回的bool值
state.allBound = allBound
} else {
// 没有卷需要绑定时 值直接设置为true
state.allBound = true
}
return nil
}
其中调用了AssumePodVolumes()
方法,更新了AssumeCache
缓存和原PodVolumes
对象中的信息,其中的pvcCache
、pvcCache
和Pod的Assume
原理类似,都是对预期将会存在的对象做一份在缓存中的记录。
// AssumePodVolumes will take the matching PVs and PVCs to provision in pod's
// volume information for the chosen node, and:
// 1. Update the pvCache with the new prebound PV.
// 2. Update the pvcCache with the new PVCs with annotations set
// 3. Update PodVolumes again with cached API updates for PVs and PVCs.
func (b *volumeBinder) AssumePodVolumes(logger klog.Logger, assumedPod *v1.Pod, nodeName string, podVolumes *PodVolumes) (allFullyBound bool, err error) {
logger.V(4).Info("AssumePodVolumes", "pod", klog.KObj(assumedPod), "node", klog.KRef("", nodeName))
defer func() {
if err != nil {
metrics.VolumeSchedulingStageFailed.WithLabelValues("assume").Inc()
}
}()
// 检查Pod需要的所有卷是否都已经被绑定
// 如果已经绑定了就直接返回
if allBound := b.arePodVolumesBound(logger, assumedPod); allBound {
logger.V(4).Info("AssumePodVolumes: all PVCs bound and nothing to do", "pod", klog.KObj(assumedPod), "node", klog.KRef("", nodeName))
return true, nil
}
// 静态卷预占 PV
newBindings := []*BindingInfo{}
for _, binding := range podVolumes.StaticBindings {
newPV, dirty, err := volume.GetBindVolumeToClaim(binding.pv, binding.pvc)
logger.V(5).Info("AssumePodVolumes: GetBindVolumeToClaim",
"pod", klog.KObj(assumedPod),
"PV", klog.KObj(binding.pv),
"PVC", klog.KObj(binding.pvc),
"newPV", klog.KObj(newPV),
"dirty", dirty,
)
if err != nil {
logger.Error(err, "AssumePodVolumes: fail to GetBindVolumeToClaim")
b.revertAssumedPVs(newBindings)
return false, err
}
// TODO: can we assume every time?
if dirty {
// 缓存更新
err = b.pvCache.Assume(newPV)
if err != nil {
b.revertAssumedPVs(newBindings)
return false, err
}
}
newBindings = append(newBindings, &BindingInfo{pv: newPV, pvc: binding.pvc})
}
// 动态卷预占 PVC
newProvisionedPVCs := []*v1.PersistentVolumeClaim{}
for _, claim := range podVolumes.DynamicProvisions {
// The claims from method args can be pointing to watcher cache. We must not
// modify these, therefore create a copy.
claimClone := claim.DeepCopy()
metav1.SetMetaDataAnnotation(&claimClone.ObjectMeta, volume.AnnSelectedNode, nodeName)
// 缓存更新
err = b.pvcCache.Assume(claimClone)
if err != nil {
b.revertAssumedPVs(newBindings)
b.revertAssumedPVCs(newProvisionedPVCs)
return
}
newProvisionedPVCs = append(newProvisionedPVCs, claimClone)
}
// PodVolumes对象更新
podVolumes.StaticBindings = newBindings
podVolumes.DynamicProvisions = newProvisionedPVCs
return
}
4.1. 失败后的状态回滚
仍以VolumeBinding
为例,失败后的Unreserve
插件获取调度开始时从ApiServer
中获取到的对象信息,并借助Restore()
方法向FIFO
中发送更新事件,使本地缓存中的数据回滚到最初状态。
func (f *frameworkImpl) runReservePluginUnreserve(ctx context.Context, pl framework.ReservePlugin, state *framework.CycleState, pod *v1.Pod, nodeName string) {
if !state.ShouldRecordPluginMetrics() {
pl.Unreserve(ctx, state, pod, nodeName)
return
}
startTime := time.Now()
pl.Unreserve(ctx, state, pod, nodeName)
f.metricsRecorder.ObservePluginDurationAsync(metrics.Unreserve, pl.Name(), framework.Success.String(), metrics.SinceInSeconds(startTime))
}
func (pl *VolumeBinding) Unreserve(ctx context.Context, cs *framework.CycleState, pod *v1.Pod, nodeName string) {
s, err := getStateData(cs)
if err != nil {
return
}
// we don't need to hold the lock as only one node may be unreserved
podVolumes, ok := s.podVolumesByNode[nodeName]
if !ok {
return
}
pl.Binder.RevertAssumedPodVolumes(podVolumes)
}
func (b *volumeBinder) RevertAssumedPodVolumes(podVolumes *PodVolumes) {
b.revertAssumedPVs(podVolumes.StaticBindings)
b.revertAssumedPVCs(podVolumes.DynamicProvisions)
}
func (b *volumeBinder) revertAssumedPVs(bindings []*BindingInfo) {
for _, BindingInfo := range bindings {
b.pvCache.Restore(BindingInfo.pv.Name)
}
}
func (c *AssumeCache) Restore(objName string) {
defer c.emitEvents()
c.rwMutex.Lock()
defer c.rwMutex.Unlock()
objInfo, err := c.getObjInfo(objName)
if err != nil {
// This could be expected if object got deleted
c.logger.V(5).Info("Restore object", "description", c.description, "cacheKey", objName, "err", err)
} else {
if objInfo.latestObj != objInfo.apiObj {
c.pushEvent(objInfo.latestObj, objInfo.apiObj)
objInfo.latestObj = objInfo.apiObj
}
c.logger.V(4).Info("Restored object", "description", c.description, "cacheKey", objName)
}
}
然后调用Cache.ForgetPod()
方法,把Pod的信息从本地缓存的cache.podStates
以及cache.assumedPods
集合中删除。Permit
扩展点的失败处理与之完全相同。
5. Permit扩展点
Reserve
扩展点之后紧接着就是Permit
扩展点,通过代码逻辑可以看出,在执行完具体插件之后会对返回的状态status
做出判断,这里和其他插件返回状态相比,多了一个Wait
状态,如果没有返回Success
而是Wait
时,根据返回值设置插件等待的超时时长(最大不超过15分钟
),并修改statusCode
标识位,在遍历执行完所有的插件之后,如果是需要等待的,就将其加入到等待队列中。
func (f *frameworkImpl) RunPermitPlugins(ctx context.Context, state *framework.CycleState, pod *v1.Pod, nodeName string) (status *framework.Status) {
startTime := time.Now()
defer func() {
metrics.FrameworkExtensionPointDuration.WithLabelValues(metrics.Permit, status.Code().String(), f.profileName).Observe(metrics.SinceInSeconds(startTime))
}()
pluginsWaitTime := make(map[string]time.Duration)
statusCode := framework.Success
logger := klog.FromContext(ctx)
verboseLogs := logger.V(4).Enabled()
if verboseLogs {
logger = klog.LoggerWithName(logger, "Permit")
logger = klog.LoggerWithValues(logger, "node", klog.ObjectRef{Name: nodeName})
}
for _, pl := range f.permitPlugins {
ctx := ctx
if verboseLogs {
logger := klog.LoggerWithName(logger, pl.Name())
ctx = klog.NewContext(ctx, logger)
}
status, timeout := f.runPermitPlugin(ctx, pl, state, pod, nodeName)
// 返回状态判断
if !status.IsSuccess() {
if status.IsRejected() {
logger.V(4).Info("Pod rejected by plugin", "pod", klog.KObj(pod), "plugin", pl.Name(), "status", status.Message())
return status.WithPlugin(pl.Name())
}
if status.IsWait() {
// 返回状态是Wait 设置超时时间
// 最大是15分钟
if timeout > maxTimeout {
timeout = maxTimeout
}
// 设置插件等待超时时长并修改标statusCode识位
pluginsWaitTime[pl.Name()] = timeout
statusCode = framework.Wait
} else {
err := status.AsError()
logger.Error(err, "Plugin failed", "plugin", pl.Name(), "pod", klog.KObj(pod))
return framework.AsStatus(fmt.Errorf("running Permit plugin %q: %w", pl.Name(), err)).WithPlugin(pl.Name())
}
}
}
// 如果遍历结束后最终状态是Wait
if statusCode == framework.Wait {
waitingPod := newWaitingPod(pod, pluginsWaitTime)
f.waitingPods.add(waitingPod)
msg := fmt.Sprintf("one or more plugins asked to wait and no plugin rejected pod %q", pod.Name)
logger.V(4).Info("One or more plugins asked to wait and no plugin rejected pod", "pod", klog.KObj(pod))
return framework.NewStatus(framework.Wait, msg)
}
return nil
}
在frameworkImpl
中包含一个等待队列waitingPods
的结构,其类型是waitingPodsMap
,由waitingPod
的集合和一个读写锁组成。
type waitingPodsMap struct {
pods map[types.UID]*waitingPod
mu sync.RWMutex
}
type waitingPod struct {
pod *v1.Pod
// 定时器
pendingPlugins map[string]*time.Timer
// 接收结果
s chan *framework.Status
mu sync.RWMutex
}
这里很好理解了,就是组装一个waitingPod
结构,为每个其中要等待的插件设置一下定时器,然后把这个waitingPod
对象加入集合中,如果时间到了就会自动执行Reject()
方法。
func newWaitingPod(pod *v1.Pod, pluginsMaxWaitTime map[string]time.Duration) *waitingPod {
// 组装waitingPod结构
wp := &waitingPod{
pod: pod,
s: make(chan *framework.Status, 1),
}
wp.pendingPlugins = make(map[string]*time.Timer, len(pluginsMaxWaitTime))
wp.mu.Lock()
defer wp.mu.Unlock()
// 遍历等待结果的插件 分别设置定时器
for k, v := range pluginsMaxWaitTime {
plugin, waitTime := k, v
wp.pendingPlugins[plugin] = time.AfterFunc(waitTime, func() {
msg := fmt.Sprintf("rejected due to timeout after waiting %v at plugin %v",
waitTime, plugin)
// 如果超时会执行Reject方法
wp.Reject(plugin, msg)
})
}
return wp
}
如果插件返回成功会调用Allow()
方法,从pendingPlugins
的集合中获取插件的信息,然后停止定时器并删除当前元素。通过对集合长度的判断,在长度为0时表示所有的Permit
插件都已经允许这个Pod的调度了,就向waitingPod
的s
通道中发送一个framework.Success
的信号,该信号会在绑定周期被接收并判断。
func (w *waitingPod) Allow(pluginName string) {
w.mu.Lock()
defer w.mu.Unlock()
if timer, exist := w.pendingPlugins[pluginName]; exist {
// 停止当前定时器
timer.Stop()
// 从插件列表中删除当前插件
delete(w.pendingPlugins, pluginName)
}
// 还需要等待其他插件的结果
if len(w.pendingPlugins) != 0 {
return
}
// pendingPlugins中已经没有元素了 向channel中发送成功信号
select {
case w.s <- framework.NewStatus(framework.Success, ""):
default:
}
}
Permit
扩展点运行之后,也就是在整个SchedulingCycle
结束之前,会激活podsToActivate
集合中的Pod,把它们重新加入到ActiveQ
里,为下一次调度的SchedulingCycle
做好准备。
// At the end of a successful scheduling cycle, pop and move up Pods if needed.
if len(podsToActivate.Map) != 0 {
sched.SchedulingQueue.Activate(logger, podsToActivate.Map)
// Clear the entries after activation.
podsToActivate.Map = make(map[string]*v1.Pod)
}
return scheduleResult, assumedPodInfo, nil
}
5.1. Permit扩展点的延伸
在调度周期中,Permit
阶段如果返回的是Wait
状态,调度器不会因为等待它返回的结果而去影响其他Pod调度的效率,而是在异步执行绑定周期BindingCycle
的开始处确认waitingPod
的最终结果是Success
还是Rejected
。
// Run "permit" plugins.
if status := fwk.WaitOnPermit(ctx, assumedPod); !status.IsSuccess() {
if status.IsRejected() {
fitErr := &framework.FitError{
NumAllNodes: 1,
Pod: assumedPodInfo.Pod,
Diagnosis: framework.Diagnosis{
NodeToStatus: framework.NewDefaultNodeToStatus(),
UnschedulablePlugins: sets.New(status.Plugin()),
},
}
fitErr.Diagnosis.NodeToStatus.Set(scheduleResult.SuggestedHost, status)
return framework.NewStatus(status.Code()).WithError(fitErr)
}
return status
}
先判断要绑定的Pod是否是waitingPod
,如果不存在就直接进入后面的流程。
func (f *frameworkImpl) WaitOnPermit(ctx context.Context, pod *v1.Pod) *framework.Status {
// 从waitingPods集合中获取当前Pod
waitingPod := f.waitingPods.get(pod.UID)
// 集合中不存在这个对象直接返回
if waitingPod == nil {
return nil
}
// WaitOnPermit流程的最后从waitingPods集合中移除当前对象
defer f.waitingPods.remove(pod.UID)
logger := klog.FromContext(ctx)
logger.V(4).Info("Pod waiting on permit", "pod", klog.KObj(pod))
startTime := time.Now()
// waitingPod的s是一个channel 用于接收最终的Permit结果
s := <-waitingPod.s
metrics.PermitWaitDuration.WithLabelValues(s.Code().String()).Observe(metrics.SinceInSeconds(startTime))
// 错误处理
if !s.IsSuccess() {
if s.IsRejected() {
logger.V(4).Info("Pod rejected while waiting on permit", "pod", klog.KObj(pod), "status", s.Message())
return s
}
err := s.AsError()
logger.Error(err, "Failed waiting on permit for pod", "pod", klog.KObj(pod))
return framework.AsStatus(fmt.Errorf("waiting on permit for pod: %w", err)).WithPlugin(s.Plugin())
}
return nil
}
至此,调度周期的标准逻辑完全结束,关于失败处理逻辑FailureHandler
会放到关于Preemption
的章节里一起说明。